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Abstract Tafel slopes for multistep electrochemical reac-
tions are derived from first principles. The derivation takes
place in two stages. First, Dirac’s perturbation theory is
used to solve the Schrödinger equation. Second, current–
voltage curves are obtained by integrating the single-state
results over the full density of states in electrolyte solutions.
Thermal equilibrium is assumed throughout. Somewhat
surprisingly, it is found that the symmetry factor that
appears in the Butler–Volmer equation is different from the
symmetry factor that appears in electron transfer theory, and
a conversion formula is given. Finally, the Tafel slopes are
compiled in a convenient look-up table.
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Introduction

To help celebrate the 80th birthday of my long-time friend
and colleague Keith B. Oldham, I thought it might be fun to
present him with a table of Tafel slopes derived from first
principles (i.e. from Schrödinger’s equation). A total proof
of this kind has been technically feasible for a number of
years but—so far as I know—it has never been attempted
before. This seems an auspicious moment to undertake this
task.

The wavefunction of an electron

The amount of theoretical ground one has to cover
before being able to solve problems of real practical
value is rather large...

P.A.M. Dirac, in “The Principles of Quantum Me-
chanics”, Clarendon Press, Oxford, 1930.

Electrochemists want to understand how electrons
interact with matter. But, before they can even begin to
construct a model, they must first specify the positions of
the electrons. This is not as easy as it sounds, however,
because the positions of electrons are not determined by
the laws of newtonian mechanics. They are determined
by the probabilistic laws of quantum mechanics. In
particular, the location of any given electron is governed
by its wavefunction Ψ. This is a complex-valued function
that describes the probability amplitude of finding the
electron at any point in space or time. Now, it is a well-
known postulate of quantum mechanics that the maxi-
mum amount of information about an electron is
contained in its wavefunction. If we accept this postulate
as true (and we currently have no alternative), then we
are forced to conclude that the wavefunction is the best
available parameter for characterizing the behaviour of an
electron in space–time.

It is natural to enquire how well wavefunctions do
characterize electron behaviour. In general, the answer is
“very well indeed”. For example, wavefunctions permit the
calculation of the most probable values of all the known
properties of electrons or systems of electrons to very high
accuracy. One problem remains, however. Due to the
probabilistic character of wavefunctions, they fail to
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describe the individual behaviour of any system at very
short times. In such cases, the best they can do is
describe the average behaviour of a large number of
systems having the same preparation. Despite this limita-
tion, the analysis of wavefunctions nevertheless provides
measures of the probabilities of occurrence of various
states and the rates of change of those probabilities. Here,
following Dirac, we are happy to interpret the latter as
reaction rate constants.

The uncertainty principle

This principle was first enunciated by Werner Heisenberg in
1927 [1]. The principle asserts that one cannot simulta-
neously measure the values of a pair of conjugate quantum
state properties to better than a certain limit of accuracy.
There is a minimum for the product of the uncertainties.
Key features of pairs of conjugate quantum state properties
are that they are uncorrelated, and, when multiplied
together, have dimensions of energy × time. Examples are
(1) momentum and location, and (2) energy and lifetime.
Thus

Δp Δx � ℏ=2 ð1Þ

ΔU Δt � h=2 ð2Þ
Here, p is momentum of a particle (in one dimension), x

is location of a particle (in one dimension), U is energy of a
quantum state, t is lifetime of a quantum state, and h is the
reduced Planck constant,

ℏ ¼ h

2p
¼ 0:6582 ðeV� fsÞ ð3Þ

The formal and general proof of the above inequalities
was first given by Howard Percy Robertson in 1929 [2]. He
also showed that the uncertainty principle was a deduction
from quantum mechanics, not an independent hypothesis.

As a result of the “blurring” effect of the uncertainty
principle, quantum mechanics is unable to predict the
precise behaviour of a single molecule at short times. But,
it can still predict the average behaviour of a large number
of molecules at short times, and it can also predict the time-
averaged behaviour of a single molecule over long times.
For example, the energy of an electron measured over a
finite time interval Δt has an uncertainty

ΔU � ℏ
2Δt

ð4Þ

and therefore, to decrease the energy uncertainty in a single
electron transfer step to practical insignificance (<1 meV,
say, which is equivalent to about 1.602×10−22 J/electron), it
is necessary to observe the electron for t>330 fs.

The quantum mechanics of electron transfer

As shown by Erwin Schrödinger [3], the wavefunction Ψ of
a (non-relativistic) electron may be derived by solving the
time-dependent equation

iℏð Þ @Ψ
@t

¼ HΨ ð5Þ

Here, H is a linear operator known as the Hamiltonian,
and ℏ is the reduced Planck constant (=h/2π). The
Hamiltonian is a differential operator of total energy. It
combines the kinetic energy and the electric potential
energy of the electron into one composite term:

iℏ
@Ψ
@t

¼ � ℏ2

2m
r2Ψ � eV Ψ ð6Þ

where m is the electron mass, −e is the electron charge, and
V is the electric potential of the electric field. Note that the
electric potential at a particular point in space (x, y, z),
created by a system of charges, is simply equal to the
change in potential energy that would occur if a test charge
of +1 were introduced at that point. So −eV is the potential
energy in the electric field. The Laplacian ²2, which also
appears in the Schrödinger equation, is the square of the
vector operator ² (“del”), defined in Cartesian co-ordinates
by

rϕ x; y; zð Þ ¼ @ϕ
@x
bxþ @ϕ

@y
byþ @ϕ

@z
bz ð7Þ

Every solution of Schrödinger’s equation represents a
possible state of the system. There is, however, always some
uncertainty associated with the manifestation of each state.
Due to the uncertainty, the square of the modulus of the
wavefunction |Ψ|2 may be interpreted in two ways: firstly and
most abstractly, as the probability that an electron might be
found at a given point and, secondly and more concretely, as
the electric charge density at a given point (averaged over a
large number of identically prepared systems for a short time
or averaged over one system for a long time).

Transition probabilities

Almost all kinetic experiments in physics and chemistry lead
to statements about the relative frequencies of events,
expressed either as deterministic rates or as statistical
transition probabilities. In the limit of large systems, these
formulations are, of course, equivalent. By definition, a
transition probability is just the probability that one quantum
state will convert into another quantum state in a single step.

The theory of transition probabilities was developed
independently by Dirac with great success. It can be
said that the whole of atomic and nuclear physics
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works with this system of concepts, particularly in the
very elegant form given to them by Dirac.

Max Born, “The Statistical Interpretation of Quantum
Mechanics”, Nobel Lecture, 11th December 1954.

Time-dependent perturbation theory

It is an unfortunate fact of quantum mechanics that exact
mathematical solutions of the time-dependent Schrödinger
equation are possible only at the very lowest levels of
system complexity. Even at modest levels of complexity,
mathematical solutions in terms of the commonplace
functions of applied physics are impossible. The recogni-
tion of this fact caused great consternation in the early days
of quantum mechanics. To overcome the difficulty, Paul
Dirac developed an extension of quantum mechanics called
“perturbation theory”, which yields good approximate
solutions to many practical problems [4]. The only
limitation on Dirac’s method is that the coupling (orbital
overlap) between states should be weak.

The key step in perturbation theory is to split the total
Hamiltonian into two parts, one of which is simple and the
other of which is small. The simple part consists of the
Hamiltonian of the unperturbed fraction of the system,
which can be solved exactly, while the small part consists
of the Hamiltonian of the perturbed fraction of the system,
which, though complex, can often be solved as a power
series. If the latter converges, solutions of various problems
can be obtained to any desired accuracy simply by
evaluating more and more terms of the power series.
Although the solutions produced by Dirac’s method are
not exact, they can nevertheless be extremely accurate.

In the case of electron transfer, we may imagine a transition
between two well-defined electronic states (an occupied state
Dj i inside an electron donor D, and an unoccupied state Aj i
inside an electron acceptor A), whose mutual interaction is
weak. Dirac showed that, provided the interaction between
the states is weak, the transition probability PDA for an
electron to transfer from the donor state to the acceptor state
increases linearly with time. Let us see how Dirac arrived at
this conclusion.

Electron transfer from one single state to another single
state

If classical physics prevailed, the transfer of an electron
from one single state to another single state would be
governed by the conservation of energy and would occur
only when both states had exactly the same energy. But in
the quantum world, the uncertainty principle (in its time-

energy form) briefly intervenes and allows electron transfer
between states whose energies are mismatched by a small
amount ΔU ¼ ℏ=2Δt (although energy conservation still
applies on average). As a result of this complication, the
transition probability of electrons between two states
exhibits a complex behaviour. Roughly speaking, the
probability for electron transfer between two precise
energies increases as t2, while the width of the band of
allowed energies decreases as t−1. The net result is an
overall transition probability that is proportional to t.

To make these ideas precise, consider a perturbation
which is “switched on” at time t=0 and which remains
constant thereafter. In electrochemistry, this corresponds to
the arrival of the system at the transition state. The time-
dependent Schrödinger equation may now be written

iℏð Þ @Ψ
@t

¼ H0 þ H1ð Þ Ψ ð8Þ

where Ψ(x,t) is the electron wavefunction, H0 is the
unperturbed Hamiltonian operator, and H1 is the perturbed
Hamiltonian operator:

H1 tð Þ ¼ 0 for t<0 ð9Þ

H1 tð Þ ¼ H1 for t � 0 ð10Þ
This is a step function withH1 being a constant independent

of time at t≥0. Solving Eq. 8, one finds that the probability of
electron transfer between two precise energies UD and UA is

PDA U; tð Þ � 2 MDAj j2
UA � UDj j2 1� cos

UA � UD½ �t
ℏ

� �� �
ð11Þ

where the modulus symbol denotes the (always positive)
magnitude of any complex number. This result is valid
provided the “matrix element” MDA is small. The matrix
element MDA is defined as

MDA ¼
Z

ΨDVΨA dv ð12Þ

where ΨD and ΨA are the wavefunctions of the donor and
acceptor states, V is their interaction energy, and the integral is
taken over the volume v of all space. MDA is, therefore, a
function of energy E through the overlap of the wavefunctions
ΨD and ΨA and accordingly has units of energy.

In an alternative representation, we exploit the identity

1� cos x ¼ 2 sin2 x=2ð Þ ð13Þ
so that

PDA U; tð Þ � 4 MDAj j2
UA � UDj j2 sin2

UA � UD½ �t
2ℏ

� �
ð14Þ
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If we now recall the cardinal sine function

sinc xð Þ ¼ sin x

x
ð15Þ

and define

x ¼ UA � UD½ �t
2h

ð16Þ

then we can substitute these formulas into the equation for
the transition probability to yield

PDA U; tð Þ � MDAj j2t2
ℏ2

sinc2 xð Þ ð17Þ

This result is wonderfully compact, but unfortunately, it
is not very useful to electrochemists because it fails to
describe electron transfer into multitudes of acceptor states
at electrode surfaces, supplied by the 108–1014 reactant
molecules per square centimetre that are typically found
there. These states have energies distributed over several
hundred meV, and all of them interact simultaneously with
all the electrons in the electrode. They also fluctuate
randomly in electrostatic potential due to interactions with
the thermally agitated solvent and supporting electrolyte
(dissolved salt ions). Accordingly, Eq. 17 must be modified
to deal with this more complex case.

Electron transfer into a multitude of acceptor states

To deal with this more complex case, it is necessary to
define a probability density of acceptor state energies
ϕA(U). Accordingly, we define ϕA(U) as the number of
states per unit of energy and note that it has units of joule−1.
If we further assume that there is such a high density of
states that they can be treated as a continuum, then the
transition probability between the single donor state Dj i
and the multitude of acceptor states Aj i becomes

PDA tð Þ �
Z 1

�1

MDAj j2t2
ℏ2

sinc2
U � UD½ �t

2ℏ

� �
ϕA Uð Þ dU

ð18Þ
Although this equation appears impossible to solve,

Dirac, in a tour de force [5], showed that an asymptotic
result could be obtained by exploiting the properties of a
“delta function” such thatZ þ1

�1
d x� x0ð ÞF xð Þ d x ¼ F x0ð Þ ð19Þ

and

d axð Þ ¼ 1

aj j d xð Þ ð20Þ

By noting the identity

lim
t!1 sinc2

U � UD½ �t
2ℏ

� �
¼ 2pℏ

t
d U � UDð Þ ð21Þ

and then extracting the limit t → ∞, Dirac found that (!)

lim
t!1 PDA tð Þ � 2pt

ℏ
MDAj j2 ϕA UDð Þ ð22Þ

where UD, the single energy of the donor state, is a
constant. As we gaze in amazement at Eq. 22, we remark
only that ϕA(UD) is not the full density of states function
ϕA(U) which it is sometimes mistakenly stated to be in the
literature. It is, in fact, the particular value of the density of
states function at the energy UD.

Upon superficial observation, it may appear that the above
formula for PDA(t) is applicable only in the limit of infinite
time. But actually, it is valid after a very brief interval of time

Δt >
ℏ

2ΔU
ð23Þ

This time is sometimes called the Heisenberg time. At
later times, Dirac’s theory of the transition probability can
be applied with great accuracy. Finally, in the ultimate
simplification of electron transfer theory, it is possible to
derive the rate constant for electron transfer ket by
differentiating the transition probability. This leads to
Dirac’s final result

ket ¼ 2p
ℏ

MDAj j2 ϕA UDð Þ ð24Þ

A remarkable feature of this equation is the absence of
any time variable. It was Enrico Fermi who first referred to
this equation as a “Golden Rule” (in 1949—in a university
lecture!), and the name has stuck [6]. He esteemed the
equation so highly because it had by then been applied with
great success to many non-electrochemical problems
(particularly the intensity of spectroscopic lines) in which
the coupling between states (overlap between orbitals) was
small. Because the equation is often referred to as “Fermi’s
Golden Rule”, the ignorant often attribute the equation to
Fermi. This is a very bad mistake.

Despite its successful application to many diverse
problems, it is nevertheless important to remember that
the Golden Rule applies only to cases where electrons
transfer from a single donor state into a multitude of
acceptor states. If electrons originate from a multitude of
donor states—as they do during redox reactions in
electrolyte solutions—then the transition probabilities from
all the donor states must be added together, yielding

ket ¼
Z þ1

�1

2p
ℏ

MDAj j2 ϕA UDð Þ ϕD UDð ÞdUD ð25Þ
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There is, alas, nothing golden about this formula. To
evaluate it, one must first develop models of each of the
probability densities and then evaluate the integral by brute
force.

The density of states functions ϕA(UA) and ϕD(UD) are
dominated by fluctuations of electrostatic potential inside
electrolyte solutions even at thermodynamic equilibrium.
According to Fletcher [7], a major source of these
fluctuations is the random thermal motion (Brownian
motion) of electrolyte ions. The associated bombardment
of reactant species causes their electrostatic potentials to
vary billions of times every second. This, in turn, makes the
tunnelling of electrons possible because it ensures that any
given acceptor state will, sooner or later, have the same
energy as a nearby donor state.

Electrostatic fluctuations at equilibrium

The study of fluctuations inside equilibrium systems was
brought to a high state of development by Ludwig
Boltzmann in the nineteenth century [8]. Indeed, his
methods are so general that they may be applied to any
small system in thermal equilibrium with a large reservoir
of heat. In our case, they permit us to calculate the
probability that a randomly selected electrostatic fluctuation
has a work of formation ΔG.

A system is in thermal equilibrium if the requirements of
detailed balance are satisfied, namely, that every process
taking place in the system is exactly balanced by its reverse
process, so there is no net change over time. This implies
that the rate of formation of fluctuations matches their rate
of dissipation. In other words, the fluctuations must have a
distribution that is stationary. As a matter of fact, the
formation of fluctuations at thermodynamic equilibrium is
what statisticians call strict-sense stationary. It means that
the statistical properties of the fluctuations are independent
of the time at which they are measured. As a result, at
thermodynamic equilibrium, we know in advance that the
probability density function of fluctuations ϕA(U) must be
independent of time.

Boltzmann discovered a remarkable property of fluctua-
tions that occur inside systems at thermal equilibrium: they
always contain the “Boltzmann factor”,

exp
�ΔW

kBT

� �
ð26Þ

where ΔW is an appropriate thermodynamic potential, kB is
the Boltzmann constant, and T is the thermodynamic
(absolute) temperature. At constant temperature and pres-
sure, ΔW is the Gibbs energy of formation of the
fluctuation ΔG. Given this knowledge, it follows that the

probability density function ϕA(V) of electric potentials (V)
must have the stationary form

ϕA Vð Þ ¼ A exp
�ΔG

kBT

� �
ð27Þ

where A is a time-independent constant. In the case of
charge fluctuations that trigger electron transfer, we have

ΔG ¼ 1

2
C ΔVð Þ2¼ 1

2

ΔVð Þ2
Λ

ð28Þ

where C is the capacitance between the reactant species
(including its ionic atmosphere) and infinity, and Λ is the
elastance (reciprocal capacitance) between the reactant
species and infinity. Identifying Λe2/2 as the reorganization
energy λ, we immediately obtain

ϕA Vð Þ ¼ A exp
� eV � eVAð Þ2

4l kBT

 !
ð29Þ

which means we now have to solve only for A. Perhaps the
most elegant method of solving for A is based on the
observation that ϕA(V) must be a properly normalized
probability density function, meaning that its integral must
equal one:Z þ1

�1
A exp

� eV � eVAð Þ2
4l kBT

 !
dV ¼ 1 ð30Þ

This suggests the following four-step approach. First, we
recall from tables of integrals that

1ffiffiffi
p

p
Z þ1

�1
exp �x2
� �

d x ¼ 1 ð31Þ

Second, we make the substitution

x ¼ eV � eVAffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l kBT

p ð32Þ

so that

1ffiffiffi
p

p
Z þ1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

4l kBT

s
exp

� eV � eVAð Þ2
4l kBT

 !
dV ¼ 1

ð33Þ

Third, we compare the constant in the equation with the
constant in the integral containing A, yielding

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2

4pl kBT

s
ð34Þ
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Fourth, we substitute for A in the original expression to
obtain

ϕA Vð Þ ¼ effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pl kBT

p exp
� eV � eVAð Þ2

4l kBT

 !
ð35Þ

This, at last, gives us the probability density of
electrostatic potentials. We are now just one step from our
goal, which is the probability density of the energies of the
unoccupied electron states (acceptor states). We merely
need to introduce the additional fact that, if an electron is
transferred into an acceptor state whose electric potential is
V, then the electron’s energy must be −eV because the
charge on the electron is −e. Thus,

ϕA �eVð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pl kBT

p exp
� eV � eVAð Þ2

4l kBT

 !
ð36Þ

or, writing U=–eV,

ϕA Uð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pl kBT

p exp
� U � UAð Þ2

4l kBT

 !
ð37Þ

where U is the electron energy. This equation gives the
stationary, normalized, probability density of acceptor states
for a reactant species in an electrolyte solution. It is a
Gaussian density. We can also get the un-normalized result
simply by multiplying ϕA(U) by the surface concentration
of acceptor species. Finally, we note that the corresponding
formula for ϕD(U) is also Gaussian

ϕD Uð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pl kBT

p exp
� U � UDð Þ2

4lkBT

 !
ð38Þ

where we have assumed that λA=λD=λ.

Homogeneous electron transfer

As mentioned above, Dirac’s perturbation theory may be
applied to any system that is undergoing a transition from
one electronic state to another, in which the energies of the
states are briefly equalized by fluctuations in the environ-
ment. If we assume that the relative probability of
observing a fluctuation from energy i to energy j at
temperature T is given by the Boltzmann factor exp
(–ΔGij/kBT), then

ket ¼ 2p
h

H2
DA

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plkBT

p exp
�ΔG*

kBT

� �
ð39Þ

where ket is the rate constant for electron transfer, HDA is
the electronic coupling matrix element between the electron
donor and acceptor species, kB is the Boltzmann constant, λ
is sum of the reorganization energies of the donor and

acceptor species, and ΔG* is the “Gibbs energy of
activation” for the reaction. Incidentally, the fact that the
reorganization energies of the donor and acceptor species
are additive is a consequence of the statistical independence
of ϕA(UA) and ϕD(UD). This insight follows directly from
the old adage that “for independent Gaussian random
variables, the variances add”. The same insight also
collapses Eq. 25 back to the Golden Rule, except that the
density of states functions must be replaced by a joint
density of states function that describes the coincidence of
the donor and acceptor energies.

Referring to Fig. 1, it is clear that ΔG* is the total Gibbs
energy that must be transferred from the surroundings to the
reactants in order to bring them to their mutual transition
states. This is simply

ΔG� ¼ l þ ΔG0ð Þ2
4l

ð40Þ

which implies that

ket ¼ 2p
h

H2
DA

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plkBT

p exp
� l þ ΔG0ð Þ2

4lkBT

 !
ð41Þ

We can also define a symmetry factor β such that

ΔG� ¼ b2l ð42Þ
and

b ¼ dΔG*

dΔG0
¼ 1

2
1þ ΔG0

l

� �
ð43Þ

Evidently, b ¼ 1=2 approximately if ΔG0 is sufficiently
small (i.e. the electron transfer reaction is neither strongly
exergonic nor strongly endergonic), and b ¼ 1=2 exactly

Fig. 1 Gibbs energy diagram for homogeneous electron transfer
between two species in solution. At the moment of electron transfer,
energy is conserved, so the reactants and the products have the same
Gibbs energy at that point. The symmetry factor β corresponds to the
fractional charge of the fluctuation on the ionic atmosphere of the
acceptor at the moment of electron transfer. After Fletcher [7]
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for a self-exchange reaction (ΔG0=0). Finally, from the
theory of tunnelling through an electrostatic barrier, we may
write

HDA ¼ H0
DA exp �gxð Þ ð44Þ

where γ is a constant proportional to the square root of the
barrier height, and x is the distance of closest approach of
the donor and acceptor.

Heterogeneous electron transfer

In the case of electron transfer across a phase boundary
(e.g. electron transfer from an electrode into a solution), the
law of conservation of energy dictates that the energy of the
transferring electron must be added into that of the acceptor
species, such that the sum equals the energy of the product
species. At constant temperature and pressure the energy of
the transferring electron is just its Gibbs energy.

Let us denote by superscript bar the Gibbs energies of
species in solution after the energy of the transferring
electron has been added to them (see Fig. 2). We have

Greactant ¼ Greactant þ qE ð45Þ
¼ Greactant � eE ð46Þ

where e is the unit charge, and E is the electrode potential
of the injected electron. For the conversion of reactant to
product, the overall change in Gibbs energy is

ΔG
0 ¼ Gproduct � Greactant ð47Þ
¼ Gproduct � Greactant � eEð Þ ð48Þ
¼ Gproduct � Greactant

� �þ eE ð49Þ
¼ ΔG0 þ eE ð50Þ

In the “normal” region of electron transfer, for a metal
electrode, it is generally assumed that the electron tunnels

from an energy level near the Fermi energy, implying eE≈
eEF. Thus, for a heterogeneous electron transfer process to
an acceptor species in solution, we can use the Golden Rule
directly

ket ¼ 2p
ℏ

H2
DA

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plkBT

p exp
� l þ ΔG0 þ eEFð Þ2

4lkBT

 !
ð51Þ

where λ is the reorganization energy of the acceptor species
in solution, and eEF is the Fermi energy of the electrons
inside the metal electrode. Or, converting to molar
quantities

ket ¼ 2p
ℏ

H2
DA

NAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plm RT

p exp
� lm þ ΔG0

m þ FEF

� �2
4lmRT

 !
ð52Þ

where ket is the rate constant for electron transfer, ℏ is the
reduced Planck constant, HDA is the electronic coupling
matrix element between a single electron donor and a single
electron acceptor, NA is the Avogadro constant, λm is the
reorganization energy per mole, ΔG0

m is the difference in
molar Gibbs energy between the acceptor and the product,
and (−FEF) is the molar Gibbs energy of the electron that
tunnels from the Fermi level of the metal electrode into the
acceptor.

Equation 52 behaves exactly as we would expect. The
more negative the Fermi potential EF inside the metal
electrode (i.e. the more negative the electrode potential), the
greater the rate constant for electron transfer from the
electrode into the acceptor species in solution.

Some simplification is achieved by introducing the
notation

�h � ΔG0
m

F
þ EF ð53Þ

where η is called the “overpotential”. Although the negative
sign in this equation is not recommended by the Interna-
tional Union of Pure and Applied Chemistry, it is
nevertheless sanctioned by long usage, and we shall use it
here. With this definition, increasing overpotential η
corresponds to increasing rate of reaction. In other words,
with this definition, the overpotential is a measure of the
“driving force for the reaction”. The same inference may be
drawn from the equation

h � �ΔG
0
m

F
ð54Þ

An immediate corollary is that the condition η=0
corresponds to zero driving force (thermodynamic equilib-

Fig. 2 Gibbs energy diagram for heterogeneous electron transfer from
an electrode to an acceptor species in solution. The superscript bar
indicates that the Gibbs energy of the injected electron has been added
to that of the reactant. After Fletcher [7]
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rium) between the reactant, the product and the electrode
ðΔG

0
m ¼ 0Þ.

By defining a molar Gibbs energy of activation,

ΔG
�
m ¼ lm þ ΔG0

m þ FEF

� �2
4lm

ð55Þ

¼ lm � Fhð Þ2
4lm

ð56Þ

we can conveniently put Eq. 52 into the standard Arrhenius
form

ket ¼ 2p
ℏ

H2
DA

NAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plm RT

p exp
�ΔG

�
m

RT

 !
ð57Þ

We can further simplify the analysis by defining the
partial derivative @ΔG

�
m

�
@ �Fhð Þ at constant ΔG0

m as the
symmetry factor β, so that

ΔG
�
m ¼ b2 lm ð58Þ

where

b ¼ @ΔG
�
m

@ �Fhð Þ ¼
1

2
1� Fh

lm

� �
ð59Þ

This latter equation highlights the remarkable fact that
electron transfer reactions require less thermal activation
energy ΔG

�
m

� �
as the overpotential (η) is increased.

Furthermore, the parameter β quantifies the relationship
between these parameters.

Expanding Eq. 56 yields

ΔG
�
m ¼ l2m � 2lmFhþ F2h2

4lm
ð60Þ

which rearranges into the form

ΔG
�
m ¼ lm

4
� 2b þ 1

4

� �
Fh ð61Þ

Now substituting back into Eq. 57 yields

ket ¼ 2p
ℏ

H2
DA

NAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plm RT

p exp
�lm
4RT

� �
� exp

2b þ 1ð ÞFh
4RT

� �
ð62Þ

¼ k0 exp
2b þ 1ð ÞFh

4RT

� �
ð63Þ

At thermal equilibrium, an analogous equation applies to
the back reaction, except that β is replaced by (1−β). Thus,
for the overall current–voltage curve, we obtain

I ¼ I0 exp
2b þ 1ð ÞFh

4RT

� �
� exp

� 3� 2bð ÞFh
4RT

� �	 

ð64Þ

where

b ¼ 1

2
1� Fh

lm

� �
ð65Þ

Equation 64 is the current–voltage curve for a reversible,
one-electron transfer reaction at thermal equilibrium. It differs
from the “textbook” Butler–Volmer equation [9, 10], namely

I ¼ I0 exp
bfFh
RT

� �
� exp

�bbFh
RT

� �	 

ð66Þ

because the latter was derived on the (incorrect) assumption of
linear Gibbs energy curves. The Butler–Volmer equation is
therefore in error. However, its outward form can be “rescued”
by defining the following modified symmetry factors

bf ¼
2b þ 1

4
ð67Þ

and

bb ¼
3� 2b

4
ð68Þ

so that

bf ¼
1

2
1� Fh

2lm

� �
ð69Þ

and

bb ¼
1

2
1 þ Fh

2lm

� �
ð70Þ

Using these revised definitions, we can continue to use
the traditional form of the Butler–Volmer equation—
provided we do not forget that we have re-interpreted βf
and βb in this new way!

Tafel slopes for multi-step reactions

As shown above, the current–voltage curve for a reversible,
one-electron transfer reaction at thermal equilibrium may be
written in the form

I ¼ FACk0 exp
bfFh
RT

� �
� exp

�bbFh
RT

� �	 

ð71Þ

which corresponds to the reaction

−+ eA     B ð72Þ

In what follows, we seek to derive the current–voltage
curves corresponding to the reaction

−+ eA n Z ð73Þ
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In order to keep the equations manageable, we consider
the forward and backward parts of the rate-determining step
independently. This makes the rate-determining step appear
irreversible in both directions. For the most part, we also
restrict attention to reaction schemes containing uni-molec-
ular steps (so there are no dimerization steps or higher-order
steps). The general approach is due to Roger Parsons [11].

We begin by writing down all the electron transfer
reactions steps separately:

 

−+ eA        B       [pre-step 1]  
−+ eB         C            [pre-step 2] 

 :                    :                : 
 :                     :                : 

−+ eQ        R            [pre-step np] 

    

   −+ eR qn   →   S            [rds] 

−+ eS         T             [post-step 1] 
−+ eT         U             [post-step 2] 

 :                     :                 : 
 :                     :                 : 

−+ eY         Z            [post-step nr]

 

 

 

 

 

ð74Þ

Next, we adopt some simplifying notation. First, we
define np to be the number of electrons transferred prior to
the rate-determining step. Then we define nr to be the
number of electrons transferred after the rate-determining
step. In between, we define nq to be the number of electrons
transferred during one elementary act of the rate-determining
step (this is a ploy to ensure that nq can take only the values
zero or one, depending on whether the rate-determining
step is a chemical reaction or an electron transfer. This will
be convenient later).

Restricting attention to the above system of uni-
molecular steps, the total number of electrons trans-
ferred is

n ¼ np þ nq þ nr ð75Þ

We now make the following further assumptions. (1)
The exchange current of the rate-determining step is at least
100 times less than that of any other step, (2) the rate-
determining step of the forward reaction is also the rate-
determining step of the backward reaction, (3) no steps are
concerted, (4) there is no electrode blockage by adsorbed
species, and (5) the reaction is in a steady state. Given these
assumptions, the rate of the overall reaction is

Itotal ¼ I0 exp ½ np þ nqbf � F
RT h

� �� exp �½ nr þ nqbb� F
RT h

� �� �
¼ I0 exp afFh=RTð Þ � exp �abFh=RTð Þ½ �

ð76Þ

In the above expression, αf should properly be called
the transfer coefficient of the overall forward reaction,
and correspondingly, αb should properly be called the
transfer coefficient of the overall backward reaction. But
in the literature, they are often simply called transfer
coefficients.

It may be observed that nr does not appear inside the first
exponential in Eq. 76. This is because electrons that are
transferred after the rate-determining step serve only to
multiply the height of the current/overpotential relation and
do not have any effect on the shape of the current/
overpotential relation. For the same reason, np does not
appear inside the second exponential in Eq. 76.

Although Eq. 76 has the same outward form as the Butler–
Volmer equation (Eq. 66), actually the transfer coefficients αf

and αb are very different from the modified symmetry factors
βf and βb and should never be confused with them. Basically,
αf and αb are composite terms describing the overall kinetics
of multi-step many-electron reactions, whereas βf and βb are
fundamental terms describing the rate-determining step of a
single electron transfer reaction. Under the assumptions listed
above, they are related by the equations

af ¼ np þ nqbf ð77Þ

and

ab ¼ nr þ nqbb ð78Þ

A century of electrochemical research is condensed into
these equations. And the key result is this: if the rate-
determining step is a purely chemical step (i.e. does not
involve electron transfer), then nq=0, and the modified
symmetry factors βf and βb disappear from the equations
for αf and αb. Conversely, if the rate-determining step is an
electrochemical step (i.e. does involve electron transfer),
then nq=1, and the modified symmetry factors βf and βb
enter the equations for αf and αb. Also, in passing, we
remark that αf and αb differ from βf and βb in another
important respect. The sum of βf and βb is

bf þ bb ¼ 1 ð79Þ

whereas the sum of αf and αb is

af þ ab ¼ n ð80Þ

That is, the sum of the transfer coefficients of the
forward and backward reactions is not necessarily unity.
This stands in marked contrast to the classic case of a
single-step one-electron transfer reaction, for which the sum
is always unity. Furthermore, in systems where the rate-
determining steps of the forward and backward reactions
are not the same—a common occurrence—the sums of αf

and αb have no particular diagnostic value.
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Regarding experimental measurements, the analysis of
Tafel slopes [12] is generally performed by evaluating the
expression

af or ab ¼ 2:303RT

F

@ log Ij j
@ h

� �
Ij j > I0 ð81Þ

Such an analysis should be treated with great caution,
however, since both precision and accuracy require the
collection of data over more than two orders of magnitude
of current, with no ohmic distortion, no diffusion control
and no contributions from background currents. The
kinetics should also be in a steady state. Accordingly, no
experimental “Tafel slope” should be believed that has
been derived from less than two orders of magnitude of
current.

The theoretical analysis of multi-step reactions is also
difficult. On one hand, the number of possible mechanisms
increases rapidly with the number of electrons transferred,
which makes the algebra complex. On the other hand, the
assumption that the exchange current of the rate-determining
step is 100 times less than that of all other steps is not
necessarily true, and hence, there is always a danger of over-
simplification. To steer a course between the Scylla of
complexity and the Charybdis of over-simplification, we here
restrict our attention to quasi-equilibrated reduction reactions
for which the number of mechanistic options is small. To
simplify our analysis further, we write βf in the form

bf ¼
1

2
1� Fh

2lm

� �
¼ 1=2 1�Δð Þ ð82Þ

We also write 2.303 RT/F≈60 mV at 25 °C (actually, the
precise value is 59.2 mV).

In what follows, the rate-determining step is indicated by
the abbreviation “rds”. Steps that are not rate-determining
are labelled “fast” (though of course in the steady state all
steps proceed at the same rate). As a shorthand method of
uniquely identifying component steps of reaction schemes,
we also adopt the following notation: E indicates an
electrochemical step, C indicates a chemical step, D
indicates a dimerization step, and a circumflex accent (^)
indicates a rate-determining step.

Example 1 bE
 �

Oþ e� ! R rds

In this case, np=0, nq=1, nr=0
so that af ¼ npþ nqbf � 1=2 1�Δð Þ, and

@h
@ log Ij j ¼

2:303RT

afF
� 120

1�Δð Þ mVdecade�1 ð83Þ

This is the classical result for a single-step one-electron
transfer process. Note that fast chemical equilibria before or
after the rate-determining step have no effect on the Tafel
slope, as the next two examples confirm.

Example 2 CbE
 �

−+ eI    →   R        rds 

O       I         (rearranges)    fast

In this case, np=0, nq=1, nr=0
so that af ¼ np þ nqbf � 1=2 1�Δð Þ, and

@h
@ log Ij j ¼

2:303RT

afF
� 120

1�Δð Þ mVdecade�1 ð84Þ

Example 3 bEC
 �
−+ eO    →   I   rds 

I       R (rearranges)  fast

In this case, np=0, nq=1, nr=0
so that af ¼ np þ nqbf � 1=2 1�Δð Þ, and

@h
@ log Ij j ¼

2:303RT

afF
� 120

1�Δð Þ mVdecade�1 ð85Þ

Example 4 EbC
 �
−+ eO     I          fast 

 I   →   R       (rearranges)   rds

In this case, np=1, nq=0, nr=0
so that af ¼ np þ nqbf ¼ 1, and

@h
@ log Ij j ¼

2:303RT

af F
� 60mVdecade�1independent of bf :

ð86Þ

Example 5 bCE
 �
O    →   I     (rearranges)    rds

−+ eI     R    fast 

In this case, np=0, nq=0, nr=1
so that af ¼ npþ nqbf ¼ 0, and
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@h
@ log Ij j ¼

2:303RT

af F
� 1mVdecade�1independent of bf : ð87Þ

Note: the current is independent of potential and is
known as a kinetic current.

Example 6 bEE
 �
−+ eO    →   I            rds

−+ eI        R         fast

In this case, np=0, nq=1, nr=1
so that af ¼ npþ nqbf � 1=2 1�Δð Þ, and

@h
@ log Ij j ¼ 2:303RT

afF
� 120

1�Δð ÞmVdecade�1 ð88Þ

Example 7 EbE
 �
−+ eO         I    fast

−+ eI     →    R   rds

In this case, np=1, nq=1, nr=0
so that af ¼ np þ nqbf � 1þ 1=2 1�Δð Þ, and

@h
@ log Ij j ¼ 2:303RT

afF
� 40

1� Δ
3

� �mVdecade�1 ð89Þ

Example 8 EEbC
 �
−+ eO    I         fast

−+ eI      I′         fast

I′    →   R         (rearranges) rds

In this case, np=2, nq=0, nr=0
so that af ¼ npþ nqbf ¼ 2, and

@h
@ log Ij j ¼

2:303RT

afF
¼ 30mVdecade�1 independent of bf :

ð90Þ
Example 9 EbCE
 �

−+ eO       I         fast 

      I   →   I′       (rearranges)  rds

–eI +′       R       fast 

In this case, np=1, nq=0, nr=1
so that af ¼ npþ nqbf ¼ 1, and

@h
@ log Ij j ¼

2:303RT

afF
¼ 60mVdecade�1 independent of bf : ð91Þ

Note: 60 mV decade–1 Tafel slopes are very common for
the reduction reactions of organic molecules containing
double bonds because as soon as the first electron is “on
board”, there are many opportunities for structural rear-
rangement compared with inorganic molecules. This rear-
rangement is usually rate determining.

Example 10 ECbE
 �
−+ eO        I         fast

I   →   I′       (rearranges)  fast

–eI +′        R       rds 

In this case, np=1, nq=1, nr=0
so that af ¼ np þ nqbf � 1þ 1=2 1�Δð Þ, and

@h
@ log Ij j ¼

2:303RT

afF
� 40

1� Δ
3

� � mVdecade�1 ð92Þ

Example 11 EEEbC
 �
−+ eO    I   fast

−+ eI    I′         fast 

−+′ eI    I ′′         fast 

I ′′       R  (rearranges) rds

In this case, np=3, nq=0, nr=0
so that af ¼ npþ nqbf ¼ 3, and

@h
@ log Ij j ¼

2:303RT

afF

¼ 20mVdecade�1 independent of bf : ð93Þ

Example 12 EEbE
 �
−+ eO      I         fast

−+ eI      I′         fast 

−+′ eI       R         rds

In this case, np=2, nq=1, nr=0
so that af ¼ np þ nqbf � 2þ 1=2 1�Δð Þ, and
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@h
@ log Ij j ¼

2:303RT

afF
� 24

1� Δ
5

� � mVdecade�1 ð94Þ

Example 13 CbED
 �
 H+   (H+)ads        fast

(H+)ads   +   e–        (H•)ads         rds

 2(H•)ads            H2            fast

In this case, np=0, nq=1, nr=0, but the presence of the
follow-up dimerization step means that the total number of
electrons per molecule of product n ¼ 2 np þ nq

� �þ nr ¼ 2.
However, the dimerization step has no effect on the rate of
the reaction, so that af ¼ np þ nqbf � 1=2 1�Δð Þ, and

@h
@ log Ij j ¼

2:303RT

afF
� 120

1�Δð Þ mVdecade�1 ð95Þ

Notes:

(1) This is a candidate model for hydrogen evolution on
mercury.

(2) The formation of (H•)ads is slow, and the destruction of
(H•)ads is fast. Hence, the electrode surface has a low
coverage of adsorbed hydrogen radicals.

(3) For simplicity, we have written the hydrogen ion H+

instead of the hydronium ion H3O
+.

(4) In the last stage of the reaction, we have assumed that
(H•)ads is mobile on the electrode surface, so the
mutual encounter rate of (H•)ads species is fast.

(5) At low rates of reaction, the H2 produced is present in
solution as H2(aq). At high rates of reaction, the H2

nucleates as bubbles and evolves as a gas.
(6) This mechanism is not one of the textbook mecha-

nisms. The closest textbook mechanism is the “Volmer
mechanism”, which assumes a concerted electron
transfer and proton transfer:

Hþ þ e� ! H�ð Þads ð96Þ

Recall that two reactions are said to be concerted if the
overall rate of reaction through their merged transition state
is faster than the rate through their separate transition states.
Because the Volmer mechanism posits simultaneous elec-
tron and nuclear motions, it violates the Frank–Condon
principle. However, this is not to say that it does not occur
in reality, because H+ has a low rest mass compared with all
other chemical species.

Example 14 CEbD
 �
   H+                        (H+)ads         fast

(H+)ads  +  e–                     (H•)ads         fast

2(H•)ads                      H2              rds

In this case, np=1, nq=0, nr=0, but the presence of the
rate-determining dimerization step means that the total
number of electrons per molecule of product
n ¼ 2 np

� �þ nq þ nr ¼ 2. The overall rate of reaction now
depends on the square of the concentration of (H•)ads, so
that af ¼ 2 np

� �þ nqbf ¼ 2 and

@h
@ log Ij j ¼

2:303RT

afF

¼ 30mVdecade�1 independent of bf : ð97Þ
Notes:

(1) This is a candidate model for hydrogen evolution on
palladium hydride.

(2) This mechanism is known in the literature as “The
Tafel Mechanism”.

(3) A low coverage of the electrode is assumed again.
However, on this occasion, such an assumption
possibly conflicts with the fact that the formation of
(H•)ads may be fast and the destruction of (H•)ads may
be slow. If that occurs, a more complex reaction
scheme has to be considered to take into account the
coverage by intermediates.

(4) The hydrogen evolution reaction exemplifies the metal
electrode material effect. This effect occurs when an
electrode surface stabilizes an intermediate that is
unstable in solution and thus enhances the overall rate
(i.e. decreases the overpotential). In the present case,
the palladium surface strongly stabilizes H•, and so its
hydrogen overpotential is very low. By contrast, the
mercury surface only weakly stabilizes H•, and so its
hydrogen overpotential is very high. [The instability of
H•(aq) is evident from the standard potential of its
formation from H+, about −2.09 V vs SHE, so free H•
(aq) never appears at “normal” potentials between 0
and −2.0 V vs SHE.]

(5) An alternative formulation of the metal electrode
material effect is the following: If the same overall
reaction occurs faster at one electrode material than
another, then the faster reaction necessarily involves
an adsorbed intermediate. This is, in fact, a very
clever way of “observing” short-lived intermediates
without using fancy apparatus! However, to be certain
that a reaction genuinely involves an adsorbed
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intermediate, the overpotential of the faster case
should be at least kT/e (25.7 mV) less than that of
the slower case to ensure that the difference is not due
to minor differences in the density of states at the
Fermi energy of the electrodes.

(6) At low rates of reaction, the H2 produced is present in
solution as H2(aq).

Summary

Conclusions

Tafel slopes for multistep electrochemical reactions have
been derived from first principles (Table 1). Whilst no

claim is made that individual results are original (indeed
most of them are known), their derivation en masse has
allowed us to identify the assumptions that they all have in
common. Thus, the four standard assumptions of electro-
chemical theory that emerge are: (1) there is weak orbital
overlap between reactant species and electrodes, (2) the
ambient solution never departs from thermodynamic equi-
librium, (3) the fluctuations that trigger electron transfer are
drawn from a Gaussian distribution, and (4) there is quasi-
equilibrium of all reaction steps other than the rate-
determining step.

Finally, we reiterate that the Butler–Volmer equation
fails at high overpotentials. The rigorous replacement is Eq.
64, although traditionalists may prefer to retain the old
formula by applying the corrections given by Eqs. 67 and
68.
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